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Abstract 

For a number of incommensurate crystal phases with a 
one-dimensional modulation and for all those with a 
higher-dimensional modulation which are known to the 
authors, the Bravais class is determined. This is done 
partly to illustrate the use of the complete list of Bravais 
classes published in a previous paper [Janner, Janssen 
& de Wolff (1983). Acta Cryst. A39, 658-666] partly 
to give an overview of the crystals having higher- 
dimensional modulation. 

I. Introduction 

In a preceding paper (Janner, Janssen & de Wolff, 
1983a), here denoted by I, tables have been given with 
a complete classification of Bravais classes having less 
than four internal dimensions and in another (Janner, 
Janssen & de Wolff, 1983b), here denoted by II, tables 
of all so-called elementary Bravais classes. In those 
papers the principle of the derivation and the meaning 
of the notation adopted have been given using an 
algebraic and group-theoretical language. Conciseness 
and precision while introducing new concepts and new 
notations made that choice natural. 

Those tables, however, are primarily intended for 
crystaUographers as help for the structural inter- 
pretation of the diffraction pattern of incommensurate 
crystals. In general, for many crystallographers a 
geometrical and pragmatical approach may be better 
suited. The present article is meant to satisfy that need. 
Accordingly a geometrical presentation will be adop- 
ted, supplemented with examples of applications based 
on diffraction and structural data already published. 

More detailed justification of the consistency of the 
superspace approach adopted can be found in I and in 
the other papers quoted there. 

II. Point symmetry of the diffraction pattern 

An incommensurate crystal phase is characterized by 
the fact that the reflections in the diffraction pattern 
cannot be labeled by three integers, but require a larger 
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number of indices. There seems to be no unique 
prescription how to proceed in these cases, but on the 
other hand there is rarely a fundamental difficulty in 
finding an indexing system. 

Often the incommensurate phase originates from a 
structure with space-group symmetry. In those cases 
the reflections which stem directly from reflections in 
the normal phase play a special role. In other cases the 
modulation giving rise to the incommensurability can 
be considered as a weak perturbation and a normal 
lattice of reflections stands out among weaker ones. In 
all these cases there is a normal set of preferred 
reflections which are called the main reflections. 

A help to find the lattice of main reflections is the 
symmetry of the diffraction pattern. If the wave vectors 
corresponding to diffraction peaks are denoted by k 
and the intensity of the spot at k by I(k), we call a 
point-group transformation R a symmetry transforma- 
tion for the diffraction pattern if 

I(Rk)=I(k) (1) 

for any k. These transformations form a group P, 
which is one of the Laue groups. The main reflections 
should be selected in such a way that they form a 
three-dimensional lattice A* that is invariant under this 
point group. In the following we assume that such a 
choice has been made. 

III. Satellite reflections 

All reflections not belonging to A* are satellite 
reflections. For their labeling the three indices of A* do 
not suffice. Consider a satellite with wave vector q. 
With respect to a conventional basis a*, b*, c* of A*, q 
can be written as 

q = aa* + fib* + yc*, (2) 

where ~ p, ), are not all integers or simple fractions. (If 
this is the case, the choice of A* has been made 
inappropriately, because q would correspond to a 
vector of the reciprocal lattice of a superstructure.) The 
set of reflections which are linear combinations of a*, 
b*, c* and q is then labeled by 
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(h + m~t, k + mfl, l + m),) (3) 

or equivalently by 

(h,k,l,m) (4) 

with h,k,l,m integers. If (4) does not exhaust all 
satellites, a second wave vector q2 can be found to 
describe (all or part of) the remaining ones by adding a 
term m2q 2 and so on until all observed satellites have 
been described. The general expression, therefore, is 

k = ha* + kb* + lc* + m 1 ql + ... + md qd, (5) 

where h,k,l  are integers and m 1 . . . .  , m d are small 
integers. We call d the internal dimension. The set of all 
vectors of the form (5) is called M*. The (basic) 
satellite wave vectors q~, q2, ..., qd are chosen in the 
BriUouin zone (BZ) of A* in such a way that d is 
minimal. From the construction it follows that the 
diffraction vectors k corresponding to reflections 
belong to M*. 

Since we have chosen A* in such a way that the 
point-symmetry group of the diffraction pattern leaves 
A* invariant, this is a subgroup of the (holohedral) 
point group of the lattice of main reflections. 

The group of symmetry transformations which 
determines the Bravais class of the incommensurate 
structure is the group K of all elements which leave M* 
invariant, i.e. those elements R which transform each 
wave vector k of the set M* into itself or into another 
one. These point transformations form a subgroup of 
the (holohedral) point group of A*. If k belongs to the 
diffraction pattern and R to K, then k is an element of 
M* and so also Rk. However, in general, I (Rk) :/: I(k). 
Hence, the symmetry of the diffraction pattern is lower 
than or equal to that of M*. 

Consider as an example a hexagonal diffraction 
pattern (Fig. 1) with wave vectors 

k = ha* + hb* + le* + mlq x + m2q 2 + maq3, (6) 

where a*, b*, e* form a hexagonal lattice: a* = b*, 
/ (a* ,b*)  = 60 °,/_(a*,e*) = 90 °, /_(b*,e*) -- 90 ° and 
where 

ql = eta* + )'c*, (7) 

q2 ----- ct(--a* + b*) + 7e*, 

q3 ----ab* + 7c*. 

We assume that the diffraction pattern has point- 
symmetry group 3. The main reflections ha* + kb* + 
le* form a primitive hexagonal lattice. The transform of 
q~ under the sixfold rotation is ab* + ye*, which is not a 
linear combination of the form (6). Hence the p_oint 
group of M* is lower than that of A*: it is 3ml. 
However, the intensities of two reflections related by a 
mirror through the c axis are in general not the same. 
Hence P is a subgroup of K, which in turn is a 
subgroup of the (holohedral) point group K a. 

The basic satellites (7) of the example have the 
property that q2 and q3 are obtained from ql through 
the action of elements of K = 3rn 1. Therefore, in order 
to reconstruct the set M* it is sufficient to know K and 
the components of ql. The action of K on q~ gives six 
vectors, among which three are rationally independent, 
and which can be chosen as in (7). The six vectors 
{Rql }, for R in 3rn, form a star. 

As stated before, for the Bravais-class determination 
only the symmetry group K of M* is relevant. This 
is just as in the case of ordinary crystals, where the 
vectors k of the diffraction pattern, i.e. the reciprocal 
lattice, determine the translation group and its Bravais 
class. So, in the above example, the mirror planes of 
M* are elements of K, though they have to be dis- 
regarded in a space-group determination since they do 
not occur in the Laue group P. 

So the Bravals class of an incommensurate crystal is 
determined by the set M*, just as it is determined for an 
ordinary crystal by the Bravais lattice. (Usually the 
definition is stated in terms of the direct lattice, but it 
can equally well be expressed for the reciprocal lattice.) 
The actual definition in either case consists of criteria of 
equivalence, that is, conditions which two sets M* - or 
two lattices, for ordinary crystals - should fulfill in 
order to be assigned to the same Bravais class. 

Essentially the criteria for equivalence of two sets 
require that they have the same K and d and also the 
same Bravais class for the lattice of main reflections. 
Moreover, the latter must have the same orientation 
with respect to the elements of K. Finally, it must be 
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Fig. 1. (a) Part of the diffraction pattern for a hexagonal structure 
with three-dimensional modulation. The diameter of the circles 
represents the intensity. (b) The cluster of satellites around the 
main reflection 000. 
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possible to choose the vectors q~ such that they are 
expressed by the same general triplets of components. 
A more precise algebraic definition is given in I. 

The symbol for a Bravais class consists of two parts. 
The first part is formed by a capital letter (P, C, I, etc.) 
indicating the centering type of A, followed by the 
Hermann-Mauguin symbol of K. As in every space- 
group symbol, the designation of K must be adapted to 
the lattice A (differentiation between 3ml and 31m). 
Moreover, the capitals A, B, C in the orthorhombic 
system need not be equivalent here, because the 
satellites usually create essential differences between 
the axes. The second part of the Bravais-class symbol is 
constructed by writing the set of coordinates (a~, fl~, y~) 
(a2, fiE, Y2) .... where only one triplet is written for each 
vector Ql, where Q~, Q2, . . . ,  Qs form a minimal set 
such that each reflection (5) is a linear combination of 
vectors of A* and vectors obtained from Q~, ..., Qs by 
the action of K. 

The definition of Bravais class is just a general- 
ization of the usual one for ordinary crystal phases. 
Each Bravais class of an incommensurate phase 
belongs to one of the 14 ordinary Bravais classes. We 
can call all classes belonging to one ordinary Bravais 
class its family. As an example the two families of the 
monoclinic Bravais classes are given in Fig. 2. For the 
primitive monoclinic class P2/m the internal dimen- 
sions are d = 1 or d = 2. For d = 1 the basic satellite is 
either along the unique axis or in the mirror plane. If it 
is (½,0,y) it can be seen as a centering of the one with 
basic satellite (O,O,y). If it is x 1 1 (:,~,y) or (0,~,y) it can by 
another choice of basis be brought into the form (½,0,y). 

Monoctinic 8ravais Lattices 

I Unique axis c ) 

3 dim. P2/m 

3+1 dim. 

3+2 dim. 

I P21m 

V 
P 2/m [ ct,13,0) [ 

I P2/m Ic~,13~} 

Primitive 

 j00, I B ,m000 I 

I 
I • Centered i, 
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Fig. 2. The two families of monoclinic elementary Bravais classes. 
The six classes with symbol starting with P2/m belong to the 
family of primitive monoclinic Bravais class, the five others to 
that of the centered monoclinic class. The four rows correspond 
to 0, 1, 2 and 3 parameters in the modulation wave vector. Each 
Bravais class is a centering of the first one at the left-hand side in 
the row. 

A similar situation occurs for a basic satellite in the 
mirror plane through (0,0,½) and for one through 
(0,0,0). The only Bravais class with d = 2 occurs for a 
basic satellite in a general position in the Brillouin zone 
(ct,fl, y). Also for the centered monoclinic Bravais class 
there are several (4) Bravais classes of incommen- 
surate crystal phases. 

The condition that at, fit, y~ should not all be integers 
or simple fractions is, of course, related to the 
presumed incommensurate character of the crystal. 
The term 'simple fraction' is used while for a truly 
incommensurate crystal 'rational' would apply. This 
slackening of the condition is natural, because in 
general the symmetry description should not change if, 
for example, the components of a temperature- 
dependent satellite were to pass through a (non-simple) 
rational value. Moreover, recent work by Yamamoto 
(1982) shows that this point of view is useful in the 
determination of superstructures provided that satellites 
of different main reflections do not overlap so that 
unambiguous indexing is possible. 

Let us now discuss a number of two-dimensional 
examples, illustrated in Fig. 3. In the picture are drawn 
diffraction patterns of a hypothetical two-dimensional 
system. 

The symmetry group of the pattern (a) is supposed to 
be 2mm. The lattice A* generated by a* and b* has this 
symmetry. An arbitrary vector k can be written as k = 
ha* + kb* + maa*. Hence q = aa*. The set M* is left 
invariant by 2mm. So in this case P = K = K A. The 
internal dimension is d = 1. We can denote the Bravais 
class by pmm(~O). 

The symmetry group of pattern (b) is 2mm again. 
The lattice A* generated by a* + b* and - a *  + b* is 
centered rectangular. A conventional basis of A* is 
again formed by a* and b* whereas q = aa*. Hence the 
Bravais class is cmm(a,O), again with d = 1. Note that 
due to the centering there are systematic extinctions for 
h + k odd. 

The symmetry group of pattern (c) is also 2mm. The 
lattice A* is generated by a*,b*. Now an arbitrary 
vector k of M* can be written as k = ha* + kb* + 
ml(t~a* + fib*) + m2(-cta* + fib*). Hence ql = aa* + 
fib*, q2 = - aa*  + fib* and d = 2. The symmetry group 
K of M* is again 2mm. Since there is an element of K 
which transforms ql into q2, the symbol for the Bravais 
class is pmm(a,fl). 

However, if in this example fl = ½ one can write q2 = 
- q l  + b*. Hence only ql is needed as basic satellite and 
the internal dimension is d = 1 (Fig. 3d). Then the 
Bravais class is pmm(a,½). In this case the set M* 
belongs also to the set M'* generated by a*, ½b* and q = 
aa*. This implies another definition of A*. An element 
h' a* + k'(½b*) + m' aa* of M'* is an element of M* if 
k' + m' is even. So the set M'* is of Bravais class 
pmm(a,O) and M* is a centering of it (Fig. 3e). The 
labeling with M'* would imply systematic extinctions. 
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IV. Bravais-class identification from a given diffraction 
pattern 

Knowing the diffraction pattern, for identifying the 
corresponding Bravais class one can proceed as 
follows. 

(1) One looks for the (three-dimensional) point 
symmetry group P of the diffraction pattern. 

(2) One identifies the set of main reflections as 
points belonging to a lattice A* left invariant by the 
point group of the diffraction pattern. 

(3) One determines the Bravais class to which the 
corresponding direct lattice A belongs. 

(4) One chooses a conventional basis a*, b*, c* for 
A* according to the conventions adopted in Inter- 
national Tables f o r  X-ray  Crystal lography (IT). The 
main reflections are then labeled by the indices h,k,l 
accordingly. 

(5) One expresses all reflections observed by their 
(in general non-integral) indices with respect to the 
basis chosen. The general form will then be 

(h + ml cq + ... + m~ a s, k + rn 1/~t + - . .  + m~#s, 

l + m l 71 + ... + ms 7s), 

with h,k,l,m~, .. . .  m s integers and ai,/~i, 7/real (possibly 
temperature-dependent) coefficients. 

(6) One chooses a minimal set ql, ..., qa of (basic) 
satellite reflections 'in the BZ of A*, such that any 
reflection can be expressed as an integral linear 
combination of a*, b*, c*, ql , . .- ,  qd. The reflections are 
then labeled by the corresponding set of 3 + d integral 
indices h,k,l,m~, ..., m a. Note that if one (or more) of 
such qi reaches the BZ boundary, one gets a 
(3 + d)-dimensional centered Bravais lattice, even if A 
is primitive. This gives rise to centering extinctions for 

the satellite reflections as explained for the d = 1 
dimensional case in de Wolff, Janssen & Janner (1981; 
Table 1). 

(7) One determines the group K which leaves the set 
M* of linear combinations of a*, b*, e*, ql, ..., qd 
invariant. 

(8) One takes one vector from the set q~, ..., qa and 
expresses its components (al,/Y1,7~) with respect to the 
conventional basis a*, b*, e* of A*. Then one eliminates 
from q~, ..., qs all vectors that are linear combinations 
of vectors from A* and the transforms of the chosen 
vector under K. If there remains a vector qg one repeats 
this procedure. 

(9) For d < 3 one identifies the Bravais class from 
Table 1 (a), (b) and (c) of I, which appears in the form 
K(tx,fl,7; ...). For d > 3, the elementary ones (one single 
star) are listed in II. To combine them to non- 
elementary ones if necessary is very simple, as 
exemplified in I. 

As illustrated further on 'accidental' special values of 
the parameters a, fl, 7 (not imposed by symmetry) are 
possible. Steps 1 to 6 should represent the normal 
disentanglement of a diffraction pattern. The list of 
Bravais classes given in I is essentially complete: 
disagreement can be due to the choice of a different 
setting. 

V. Bravais-class identification for some 
incommensurate crystals 

In the following we study the Bravais class of 
incommensurate crystal phases as reported in the 
literature. This is done partly to illustrate the notions 
introduced above, partly to determine the Bravais class 
for a number of interesting compounds. We shall follow 
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Fig. 3. Diffraction patterns for some hypothetical two-dimensional modulated structures with their Bravais class. The main reflections are 
labeled by hk, the satellites by hkm t or hkmnm v [In case (c)pmm (ct,0) should be pmm (ct,fl).l 
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the procedure as proposed in § IV. The references from 
which the data are reported are indicated at the end of 
the corresponding point. A summary of the results is 
given in Table 1. 

(a) Thiourea SC(NH2) 2 

This material has a high-temperature phase with 
space group Pnma (T > 218 K) and a low-temperature 
superstructure with space group P21 ma (T < 191 K). 
In between there are incommensurate phases. Actually 
the p - T  phase diagram is quite complicated, but we 
restrict ourselves here to atmospheric pressure. The 
main reflections are easily found and belong to a 
primitive orthorhombic lattice A*. Hence K A = mmm. 
In the (3) intermediate incommensurate phases all 
reflections may be labeled as (h, k + mfl, l). Hence q = 
fib* and the internal dimension is d = 1. The point 

Table 1. Summary of  the Bravais-class determination 

Bravais class 
Compound Temperature One-line symbol No. (I) 

Thiourea 191-218 K Pmmm(O,O,7) 1-9 
BaMnF 4 <250 K Pmmm(½,0,7)* 1-10 

<250 K Pmmm(½,½,7)t 1-11 
ThBr4 95 K 14/mmm(O,O,y) 1-21 
Biphenyl 21-39 K P2/m(a,fl,?) 2-16 

<21 K P2/m(O,O,7) 1-5 
TTF-TCNQ 47-54 K P2/m(½,0,y) 1-6 

38-47 K P [(a,fl,7) 1-1 
<38 K P2/m(ct,fl,7) 2-16 

Hg 3_xAsF6 < 120 K Fmmm(¢t,O,O)~. 1-17 
< 120 K Fmmm(a,O,O; 0,8,0)§ 2--47 

1H-TaSe 2 90-122 K P6/mmm(a,O,O) 2-83 
<90 K Ammm(O,p,v) 2-54 

Sr t _~Cr2Se 4_~ P6/mmm(O,O,y; 0,0,v) 2-81 
y-PAMC Cmmm(l,O,y; 0,0,v) 2-24 
Fel _xO Fm3m(~,O,O) 3-211 
Cu9BiS 6 Fm3m(¢t,ct,ct) 3-217 

* X-ray scattering. 
t Neutron scattering. 
$ Basis structure. 
§ Modulated structure. 

group mmm leaves M* invariant. Hence K = mmm. 
Because d = 1 the Bravais class of M* may be 
indicated by Pmmm(O,fl, O). In the setting of the tables 
of I this is equivalent to Pmmm(O,O,7) = 1-9 (Fig. 4) 
(Yamamoto, 1980; Moudden, Denoyer & Lambert, 
1978). 

(b) BaMnF 4 

About this material there is some confusion in the 
literature. The diffraction pattern seems to be sample 
dependent. Samples with a room-temperature sym- 
metry group P212~2 do not show a transition towards 
an incommensurate phase. Samples with space group 
A2~am at room temperature show satellites at low 
temperature, but these are different for X-ray scat- 
tering and for neutron scattering due to the magnetic 
structure. With X-rays one finds a basic satellite (a,0,½) 
with a _ 0.4 in the A-centered orthorhombic lattice. 
(Here one has extinctions for k + l = odd.) Because 
apart from this satellite there are also the sym- 
metry-related ones: (a,0,-½), (-a,0,½) and (-t~,0,-½), 
the set M* has reflections (h + ma, k, l + m/2), where 
the restriction to k + l = even does not hold any longer. 
Hence there are new main reflections (h,k,l) deter- 
mining a primitive orthorhombic lattice and the Bravais 
class of M* is Pmmm(a,O,½), which in the setting of I is 
denoted by 1-10. For neutron instead of X-ray 
scattering one finds a basic satellite (a,½,½) with a ___ 
0.392. Then K = mmm and the Bravais class is 
Pmmm(a,½,½), which appears in the tables of I in the 
setting Pmmm(½,½,7) = 1-11 (Cox, Shapiro, Cowley, 
Eibschutz & Guggenheim, 1979; Scott, Habbal & 
Hidaka, 1982; Lyons, Bhatt, Negran & Guggenheim, 
1982). 

(c) ThBr 4 

The high-temperature phase has space group 
I41/amd (Fig. 5). There is a soft-mode transition at 95 K 
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Fig. 4. The Oklm reflections of thiourea in the incommensurate 
phase. 

z 

@ 

Br x 

Fig. 5. The unit cell of the average structure of ThBr 4. The 
direction of the displacements in the modulated phase is 
indicated. 
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to an incommensurate phase with modulation wave 
vector q = 7c*. The lattice of main reflections remains 
body-centered tetragonal, K A = 4/mmm. This group 
also leaves M* invariant. Hence K = K A and the 
Bravais class is I4/mmm(O,O,7), also denoted by 1-21. 
If one assumes that the incommensurate crystal 
structure represents the frozen-in soft mode, one can 
derive the superspace group and one finds 
I4Jamd(O,O,7)(s,O,s,O), which in another notation (de 
Wolff, Janssen & Janner, 1981) can be denoted as 

Dl4'/-amd (Bernard, Currat, Delamoye, Zeyen, 141-2 = - - ,  1,1 
Hubert & de Kouchkovsky, 1983). 

these satellites all originate from the same domain, one 
has d = 2 and one may choose q~ = (a,#,0) amd q2 = 
(a,-fl,0). Hence K = 2/m and the Bravais class is 
P2/m(a, fl, y). By chance one has y _ 0 in this case. 
The Bravais class is also indicated by 2-16 in I (in the 
setting with unique axis c). In the low-temperature 
phase 6a goes to zero, which means that ql = (0,fl,0) is 
the only basic satellite and therefore d = 1. Hence K = 
2/m and the Bravais class is in the setting with unique 
axis c given by: P2/m(O,O,7) = 1-6 (Cailleau, Baudour, 
Meinnel, Dworkin, Moussa & Zeyen, 1980; Cailleau, 
1981). 

(d) Biphenyl C,2H,0 

This compound has two incommensurate crystal 
phases (Fig. 6). In both phases there is a clear primitive 
monoclinic lattice of main reflections. Hence K A = 2/m. 
The unique axis is b*. In the intermediate phase II there 
are four satellites around the position ½b*. One may 
write these reflections as (h + ~a, k + ½(1 - ~b), 0). If 
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Fig. 6. The reflections near or in the plane l = 0 for biphenyl. Left 
in the region 21 < T < 39 K, right for T < 21 K. 

(e) TTF-TCNQ 

This compound has three incommensurate phases 
(Fig. 7). At 54 K the ordinary crystal has a transition 
towards an incommensurate structure. In the region 
47 < T < 54 K, the lattice of main reflections is simple 
monoclinic: K A = 2/m. The satellites are on the BZ 
boundary: ql = ½a* + fib* (unique axis b). Hence d = 1. 

= 1 k + tim,/)} is left invariant by The set M* {(h + ~m, 
K = 2/m and the Bravais class of M* is P2/m(½,0,7) 
= 1-5 in the setting with unique axis c. This set can 
be seen as a centering of the type P2/m(O,O,7). 
Below 47 K the wave vector moves away from the zone 
boundary: ql = aa* + fib* for 38 < T < 47 K. The 
subgroup of K A = 2/m leaving M* invariant is now 
K = 1. This implies for the Bravais class i((t,fl,7) = 
1-1, where the value of 7 ~- 0 is not imposed by sym- 
metry. Because of the triclinic point group, it may be 
assumed that A* is not strictly speaking monoclinic, 
but triclinic" K A = i. Below 38 K the value of a locks in 
at a value ¼. The main reflections still form a monoclinic 
lattice: K a = 2/m, but now one needs two basic satel- 
lites: ql = (¼,fl,0), q2 = (---},fl,0). Then K = 2/m and 
according to I the Bravais class is in the setting with 
unique axis c: P2/m(a, fl,7) = 2-16, with a = }, fl ~_ 0 
(Bak & Janssen, 1978; Denoyer, Comes, Garito & 
Heeger, 1975; Comes, Shapiro, Shirane, Garito & 
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Fig. 7. The dLff'raedon spots in the plane l = 0 for TrF-TCNQ. (a) 47 < T < 54 K, (b) 38 < T < 47 K, (c) T < 38 K. 
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Heeger, 1976; Khanna, Pouget, Comes, Garito & 
Heeger, 1977). 

( f )  HgH_xAsF6 

In the high-temperature phase the diffraction pattern 
shows a body-centered tetragonal lattice of main 
reflections due to the AsF 6 host lattice and diffuse 
streaks. The latter condense for T < 120 K. To start 
with, one keeps the original sharp reflections as main 
reflections: K A = 4 / m m m .  The satellites occur at 
positions (3 - & 1 - 6, 0) and ( -1  - 6, 3 - 6, 0). 
Taking qz = 6(a* + b*) one may index (3 - 6, 1 - & 0) 
by h = 3, k =  1, m = - 1 ,  and ( - 1  - & 3 -  &0)  by h = 
-1,  k = 3 and m = - 1 .  Hence d = 1. The reflections 
(h + m& k + mfi, 1) are left invariant by mirrors mxr, 
mx_y and m z. Hence K is an orthorhombic point group. 
Choose a new basis for A*: a*' = (a* + b*)/2, b*' = 
(a* - b*)/2. Then h = (h' + k ' ) /2 ,  k = (h' - k ' ) /2 ,  
l = l', m = m'. The condition for non-extinction of 
elements of A* is: h + k + l - even. Moreover, h and k 
are integers. Hence for the new indices the rules for 
non-extinctions are h' + k' = even, h' + l' = even. 
These are the rules for a face-centered orthorhombic 
lattice, which has the point group K = mmm. In the 
new basis ql = 26a*'. Hence the Bravais class is 
Fmmm(a,O,O) or 1-17. Because the point group is now 
orthorhombic the lattice of main reflections is expected 
to have an orthorhombic deformation. This has indeed 
been observed: in the modulated phase the host lattice 
is no longer tetragonal. A finer analysis of the 
diffraction pattern in the modulated phase reveals 
additional spots due to the deformation of the mercury 
chains. The additional reflections may be generated by 
q2 : 6a* - 6b* = 26b*'. This vector q2 is left invariant 
(not including the sign) by mmm,  hence this is again the 
group K. The internal dimension is now d = 2 and the 
Bravais class Fmmm(o,,O,O; O,fl, O), where by chance 
one has a = fl = 26. This relation, however, is not 
caused by symmetry. This would have been the case if 
the tetragonal symmetry of A* had not been broken" it 
represents a kind of reminiscence of the higher 
symmetry of the parent phase (Pouget, Shirane, 
Hasting, Heeger, Miro & MacDiarmid, 1978; Janner & 
Janssen, 1980b). 

(g) 1H TaSe 2 

In the 1H polytype this dichalcogenide has an 
incommensurate phase for 90 < T < 122 K. In this 
phase the diffraction pattern has seemingly a hexag- 
onal symmetry, although at present it is not clear if 2 
or 3 q wave vectors are involved. In any case the main 
reflections form a hexagonal lattice: K A = 6 /mmm.  The 
satellites are aa*, ab* and -t~(a* + b*)which belong to 
M* for ql =cta*, q2 = etb*. Then M* is invariant under 
the whole group K A = K = 6 /mmm.  The Bravais class 
of M* is P6/mmm(a,O,O) --- 2-83. In the low-tem- 
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perature phase (T < 90 K) the compound forms a 
superstructure which is pseudo-hexagonal: the basis of 
the orthorhombic lattice is a*' = a*/6, b*' = a*/6 - 
b*/3, with systematic extinctions for h' + k' = odd. 
Hence the Bravais class is C-centered orthorhombic. 
Taking this as the starting point for the description of 
the satellite reflections, the main reflections form a 
C-centered lattice: K a = m m m  with basis a*" = ~ a , l  • 
b*" = ½a* - b*, where now a* and b* no longer span a 
hexagonal lattice. The satellites are now at 2aa*", 
a(a*" - b*") and - a ( 3 a * "  - b*"). Thus one can 
choose ql = a(a*" - b*") and q2 = a(a*" + b*"). 
Hence M* is invariant under K --- K A and the Bravais 
class is in the setting of I: Ammm(O,#,v)  with # = v = ix. 
It is also denoted by 2-54 (Fung, McKernan, Steeds & 
Wilson, 1981; Moncton, Axe & DiSalvo, 1977; Janner 
& Janssen, 1980a). 

(h) Srl_xCr2Se4_ x 

The structure can be described as a hexagonal host 
lattice of Cr2Se4_x with co = 3.63 A and Sr in the 
hexagonal channels with a different interatomic dis- 
tance: cx _ 6.0 A for atoms located at the sixfold axes, 
c2 = 4 . 6 A  for those at the threefold axes. The 
diffraction pattern is hexagonal. The main reflections, 
due to the host lattice, have K A = 6 / m m m .  Because of 
the different periodicities in the channels there are 
satellites (h, k, I + m 1 y + m 2 V). Hence d = 2 and ql = 
7e*, q2 = re*. The set M* is left invariant by K = K A. 
Hence the Bravais class of M* is P6/mmm(O,O,7; 
0,0,v) = 2-81 (Brouwer, 1978). 

(i) 7 -PAMC 

The average structure is reported to be Abma.  Hence 
for the main reflections one has K A = mmm.  There are 
two sets of satellites (Fig. 8). Up to now it has not been 
fully clear if these are really independent. The first set is 
(h + m161,k , l )  with k + l + m 1 = even. The second set, 
where only first-order satellites have been observed, 
consists of (h + m 262, k, l) with k + l = odd for m 2 = 1. 
The set of diffraction vectors can be generated by ql = 
aa* + e*, q2 = a 'a* + e*. Hence d = 2. Since M* is left 
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Fig. 8. Diffraction spots in the plane k = 0 for y-PAMC. Indexing 
hOlmlm 2 for the satellites is according to a two-dimensional 
modulation. Spots labeled hOl are main reflections. 
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Fig. 9. Diffraction spots of Cu9BiS 6. (a) Spots in the unit cell of the reciprocal lattice with three basic satellites and their axes. (b) The 
cluster of satellites around the main reflection 000. 

invariant by K A one has K = K,~. The Bravais class is, 
in the setting of I, Cmmm(1,O,7; 0,0,v) = 2-24 
(Depmeier, 1981) 

(j) Wustite Fe~_xO 

The lattice of main reflections is that of a f.c.c. 
lattice. Hence K a = m3m. Around the main reflections 
the satellites are ordered in an octahedral fashion: one 
may choose ql = aa*, q2 = ab*, q3 = Be*. Hence d = 3. 
Since again M* is left invarient by K A one has K = 
m3m and the Bravais class of M* follows immediately: 
Fm3m(a,O,O) = 3-211. This was the first known 
example of an incommensurate crystal phase with d = 
3 (Yamamoto, 1982). 

(k) Cu9BiS 6 

The diffraction pattern shows main reflections 
belonging to a f.c.c, lattice: K A = m3m. The main 
reflections are surrounded by satellites in octahedral 
configuration (Fig. 9): (h + 2a, k, l), (h, k + 2a, l), 
(h, k, l + 2a), (h + ~ k + a, l + a), which can be 
described with ql = (-a,a,a), q2 = (a,-a,a), qa = 
(a,a,-a). Locally these span a f.c.c, reciprocal lattice. 
Here again d = 3. Although the intensities of the 
satellites are asymmetric, the positions of M* are left 
invariant by K = K A. Hence the Bravais class of M* is 
Fm3m(a,a,a) = 3-217 (Tomeoka & Ohmasa, 1982). 
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